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In 1965, Intel co-founder Gordon Moore
predicted that the number of electronic components on
a computer chip would double every year or two.
“Moore’s Law” has been remarkably accurate even to
this day, where the latest silicon processors now host
some ten million transistors.  This exponential growth
in chip density has been the driving force behind the
modern electronic age and has played a significant
role in the booming world economy over the last
couple decades.  Will Moore’s Law continue
indefinitely?  Well, no.  The problem is, adding
components by simply expanding the size of chips will
bog down their speed because of the time it takes for
electronic signals to traverse the chip, so the only way
to sustain this growth is to make transistors ever
smaller.  By the year 2010 or so, Moore’s Law
predicts that a one-square-centimeter chip will have
over one billion transistors, with each transistor
approaching the size of a large molecule. At this point,
significant further gains will require a fundamental
change in the way we compute, for once we’ve
entered the regime of individual molecules, atoms, and
electrons, the laws of quantum mechanics reign.

In the early 1980s, Paul Benioff (Argonne
National Laboratory) and Richard Feynman
(California Institute of Technology) tinkered with the
idea of quantum-mechanical computing elements such
as single atoms.  They showed that such tiny structures
could, in principle, behave perfectly fine as electronic
components.  They even discussed using “quantum
logic gates” largely following the laws of quantum
mechanics.  In 1985, David Deutsch (Oxford
University) went a step further.  By using the full
arsenal of quantum mechanical rules, he proposed that
the phenomenon of “quantum superposition” be
harnessed to yield massively parallel computing –
computing with multiple inputs at once in a single

device.  Instead of miniaturizing chip components
further, Deutsch posed a new way to get around the
impending limit of Moore’s Law by taking advantage
of different physical principles underlying these
components.

So far, only a few algorithms such as number
factoring have been discovered which can benefit
from quantum parallelism, and it remains speculative
whether quantum computers will ever replace the all-
purpose computers in use today.  However, interest in
quantum information processing is now proliferating
because its limits are not known, neither theoretically
nor experimentally. There may well be larger classes
of algorithms which benefit from quantum computers,
and even though large-scale quantum computers have
not yet been built, there do not seem to be any
fundamental roadblocks.  Thus, many consider
quantum computers to be an intriguing possibility to
circumvent the atomic limits to Moore’s Law.

QUBITS, QUANTUM PARALLELISM, and
QUANTUM ALGORITHMS

Quantum mechanics is now hailed as one of
the most successful theories in the history of science,
as it has precisely predicted the behavior of the
microscopic world from molecules and atoms to sub-
nuclear phenomena.  Although quantum mechanics
underlies the whole of physics, there are aspects of it
that appear highly non-intuitive since we are used to
dealing with ordinary-life, macroscopic situations. At
the heart of the matter is the concept of a quantum
superposition, where a quantum object can exist in
two states at the same time.  The superposition
“collapses” to one of its states only when the quantum
object is measured by a macroscopic object, such as a
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meter or a pair of eyes.  This dichotomy bothered
Albert Einstein, among others, who struggled to
determine a theory which would unify quantum
mechanics with the macroscopic world we live in.

Erwin Schrödinger illustrated this paradox
vividly with his famous “Schrödinger’s Cat” thought
experiment:  Imagine a cat isolated from the world in a
cage with a single radioactive atom which has not yet
decayed.  The radiation of the atom is detected by a
Geiger counter which triggers a hammer to smash a
nearby vial of cyanide.  The paradox arises when we
consider what happens after a duration of one half-life
of the radioactive atom.  Here, quantum mechanics
predicts that the atom is in a superposition of its
original state and its decayed state.  It follows then,
that the cat must also be in a superposition of being
both alive and dead! Dealing with this ridiculous
situation usually involves erecting an artificial barrier
between quantum and classical worlds – microscopic
atoms and molecules are allowed to be in
superpositions, but macroscopic objects like cats are
not.  This approach has largely allowed quantum
mechanics to coexist peacefully with classical
physics.  But a quantum computer, hosting
superpositions of information, is just a more humane
version of Schrödinger’s Cat, and may push this
artificial quantum/classical barrier closer to the
macroscopic world.

The smallest piece of classical information is
the binary digit, or bit, which can be either 0 or 1. The
simplest quantum-mechanical unit of information is the
quantum bit or “qubit.”  Qubits are able to store
superpositions of 0 and 1, denoted by α|0〉 + β|1〉,
where α and β are the weights of the superposition.  It
this notation, |x〉 signifies a quantum state and the +
sign indicates a superposition.  The states |0〉 and |1〉
may represent, for example, horizontal and vertical
polarization of a single photon, or two particular
energy levels within a single atom.  The rules of
quantum mechanics dictate that: (a) the evolution of
the weights α and β is described by the Schrödinger
wave equation, and (b) when the above quantum bit is
measured, it yields either |0〉 or |1〉 with probabilities
related to the weights α and β, respectively.  The
measurement of a quantum bit is much like flipping a
coin – the results can only be described within the
framework of probabilities.

The power of quantum computing is seen by
considering a register of many qubits.  As indicated in
the sidebar, in general, N qubits can store a
superposition of all 2N binary numbers:

γ1|000...0〉 + γ2|000…1〉  + ···· + γ2N|111...1〉. (1)

Moreover, when a quantum computation is performed
on this superposition, each piece gets processed in
superposition.  For example, quantum logic operations
can shift all the qubits one position to the left,
equivalent to multiplying the input by two.  When the
input state is in superposition, all inputs are
simultaneously doubled with one turn of the crank (see
Fig. 1a).

After this quantum parallel processing, the
state of the qubits must ultimately be measured.
Herein lies the difficulty in designing useful quantum
computing algorithms.  According to the laws of
quantum mechanics, this measurement yields just one
answer out of 2N possibilities; worse still, there is no
way of knowing which answer will appear!  It seems
quantum computers do not compute one-to-one
functions (where each input results in a unique output
as in the doubling algorithm above) any more
efficiently than classical computers.  The trick behind
a useful quantum computer algorithm involves the
phenomenon of quantum interference. Since the
weights γ1, γ2 … γ2N in the superposition (1) evolve
according to a wave equation, they can be made to
interfere with each other, as in any wavelike
disturbance.  Some weights interfere constructively,
like the crests of an ocean wave, while others cancel,
like when a valley meets a crest.  In the end, the
parallel inputs are processed with quantum logic gates
so that almost all of the weights cancel, leaving only a
very small number of answers, or even a single
answer, as depicted in Fig. 1b.  By measuring this
answer (or repeating the computation a few times and
recording the distribution of answers), information can
be gained pertaining to all 2N inputs.

In 1994, Peter Shor (AT&T Bell Labs)
constructed a quantum algorithm to calculate the
factors of a number M; that is, numbers p and q whose
product is M.  He showed that a quantum computer is
able to factor numbers exponentially faster than
classical computers.  This discovery led to a rebirth of
interest in quantum computers, in part due to the
importance of factoring for cryptography.  The security
of popular cryptosystems such as those used for
internet commerce is derived from the inability to
factor large numbers.  More generally, Shor’s
factoring algorithm also proved that quantum
computers are indeed good for something, spurring
physicists, mathematicians, and computer scientists to
search for other algorithms amenable to quantum
computing.  In 1996, for example, Lov Grover
(AT&T) proved that a quantum computer can search
unsorted databases faster than any search conducted on
a classical computer.  Still, useful quantum algorithms
are not plentiful, and it is unknown how many classes
of problems will ultimately benefit from quantum
computation.  Nevertheless, quantum computing has
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stimulated scientists to think about quantum mechanics
in terms of information processing, and this may
ultimately help unify the quantum and classical
worlds, and perhaps resolve the paradox of
Schrödinger’s Cat.

QUANTUM COMPUTER HARDWARE

On the experimental side, what resources are
needed to implement a useful quantum computer?  In
terms of the factoring algorithm, classical computers
run out of steam when factoring numbers with a
hundred-or-so digits (recently, a team of a few
hundred computers took 5 months to factor a 155-digit
number). A useful quantum factoring engine would
therefore have to factor a number with at least 200
digits. This implies that it would need a few thousand
qubits, and more than 109 quantum logic gate
operations.  Unfortunately, state-of-the-art technology
hosts only a few qubits and can do only a few quantum
logic operations. Quantum computing hardware is far
behind the software, mainly because it is very difficult
to maintain quantum-mechanical superpositions
throughout the computation. Consider the following
stringent (and apparently contradicting) hardware
requirements for a quantum computer:
(1) The qubits must be sufficiently shielded from the

environment during the computation, as external
influences behave like measurements and destroy
quantum superpositions.

(2) The qubits must interact strongly with each other
in a controlled fashion to allow the formation of
quantum logic gates and entangled superpositions.

(3) The qubits must ultimately be measured through a
controlled strong coupling to the environment
represented by a measuring device.

There obviously must be a sufficient number
of quantum bits available for a given application.
Because this may involve thousands of qubits, it is not
clear that a useful quantum computer will ever be built
and, if it is built, what form it will take.  One naturally
looks to a condensed-matter or solid-state system
because of the fantastic success of classical
computers, but the requirements for quantum
computers are significantly different and in some cases
opposite.  For example, classical computers rely on
dissipation, or a strong coupling to the environment
which ensures that a digital ‘1’ remains a ‘1’ and a ‘0’
remains a ‘0’ until we deliberately flip the bit.  This
“latching” feature allows classical computers to
operate even in the presence of noise.  In contrast, in a
quantum computer, we want superpositions to be
preserved until the final measurement; before this, any
dissipation is bad! A variety of possible schemes are
being investigated; at first they look quite different, but

they have many similarities.  For brevity, we highlight
schemes based in atomic physics currently considered
to be the most attractive.

A MODEL QUANTUM COMPUTER

Two internal states in an atom can be used as
qubit levels. Some states interact weakly with the
environment (requirement 1) so that superpositions
can be preserved for as long as hours; this is the same
attribute that makes atoms good clocks.  For instance,
the qubit levels can be represented by the orientation
of the intrinsic spin of the atom with respect to an
external magnetic field, like the two states of a proton
in a magnetic field (spin aligned or anti-aligned with
the field).  The intrinsic spin of an atom has an
associated magnetic moment and magnetic field
similar to that of a tiny bar magnet.  Thus, these
distinct energy states are much like those
corresponding to different alignments of a bar magnet
immersed in a magnetic field.  Alternatively, spins
embedded in a solid or liquid host could be used as
qubits, but satisfying both requirements 1 and 2 can be
difficult. Nuclear-magnetic-resonance (NMR)
techniques can be exploited to derive qubits from
spins within molecules. Requirement 1 can be
satisfied by using spins which are sufficiently isolated
from the environment, and requirement 2 can be
satisfied by using the naturally occurring magnetic
interactions between spins. Unfortunately, it is
difficult to initialize and read out the quantum states in
a molecule, and this system cannot readily be scaled to
many quantum bits due to the finite number of spins on
the molecule.  Moreover, unless the molecular spins
are cooled to near absolute zero, an exponential loss
in signal strength prevents this system from being
scaled beyond a few qubits.

In 1995, Ignacio Cirac and Peter Zoller
(University of Innsbruck) suggested a way to construct
a quantum computer with trapped atoms.  As shown
schematically in Fig. 2, the qubit states in this
implementation are two spin states within an atomic
ion.  The ion qubits are confined in an electrode
structure whose potentials provide a 3-dimensional
harmonic trap, analogous to the 2-D well formed by a
marble in a bowl.  If the ions are cooled, each ion
wants to rest at the bottom of the 3-D well but their
Coulomb repulsion holds them apart; a balance
between the trap and repulsion forces results in the
ions forming a regular array.  As shown in Figs. 2 and
3, the ions can be made to form a linear array by
making the trap in the horizontal direction much
weaker than the other two directions.  In principle,
there is no limit to the number of qubits which can be
held in the trap.  For typical conditions, the ions are
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separated by a few micrometers and their spins are
well-isolated from the environment and from each
other, satisfying requirement 1.  The qubits are
coupled through their collective motion, satisfying
requirement 2. At low temperature, the ions form a
quasi-molecule and their motions are best viewed in
terms of so-called normal modes.  For example, for a
trap containing two ions, the normal modes in the
horizontal direction are the center-of-mass mode
where the ions oscillate back and forth in unison and
the “stretch” mode where they oscillate in opposition,
much like a pair of pendulums connected by a spring.
Using laser-cooling techniques, the motion in these
modes can be nearly frozen out; they can be cooled to
such a degree that the modes are put in their quantum-
mechanical ground states. The ground state (labeled
|0〉) and the first-excited state (|1〉) of motion of a
selected mode themselves form a qubit.  This qubit is
special in that it is shared by all the ions; therefore, it
can be regarded as a data-bus bit through which
information can be transferred.

We now briefly discuss how to (a) prepare a
qubit superposition state in a given ion, (b) transfer the
information (the superposition state) of the selected
ion onto the motional qubit, and finally (c) form a
quantum logic gate between the motional qubit and
another selected ion.  We assume the internal state
qubits are derived from a lower and upper energy
orientation of the ion’s spin (labeled |↓〉 and |↑〉) with
respect to a background uniform magnetic field, as
outlined above.  The ion’s spin state can be altered by
applying an oscillating magnetic field.  Not only can
we flip its state from |↓〉 to |↑〉, but we can also make
arbitrary superposition states |↓〉 → α|↓〉  + β|↑〉 by
applying the oscillating field for particular times.
(These are the same types of manipulations performed
on nuclear spins in MRI [magnetic resonance
imaging].)

In addition to the uniform field, suppose we
now superimpose a field whose magnitude depends on
position; for simplicity we’ll assume the magnitude of
the additional field is +∆B at the ion’s left most
position and -∆B at its right-most position.  When the
ion oscillates back and forth, it now sees a field
oscillating at the motional oscillation frequency with
amplitude ∆B.  When this frequency exactly matches
the frequency associated with the difference in energy
between the two spin states, energy is exchanged
between the spin and the motion: |↑〉|0〉 → |↓〉|1〉.
Moreover, if this is operation is applied to a
superposition state of the spin we can map an arbitrary
state of the spin qubit to the motional data-bus qubit:
(α|↓〉 + β|↑〉)|0〉 → |↓〉(α|0〉 + β|1〉).  (The transition
|↓〉|0〉 → |↑〉|1〉 cannot occur because it doesn’t
conserve energy.)   To localize the field gradient to a

particular ion, we use the field gradient associated
with the fields of a laser beam focused onto the ion.

Very similar techniques are used to perform a
logic operation between the motional qubit and
another ion (selected by focusing the laser beam on
this second ion).  One kind of logic-gate which has
been realized experimentally is similar to a classical
exclusive-OR (XOR) gate; it is called a controlled-
NOT (CN) gate. Its associated truth table, which
describes the change in the state of the system before
and after the operation, is:

|↓〉|0〉 → |↓〉|0〉
|↑〉|0〉 → |↑〉|0〉
|↓〉|1〉 → |↑〉|1〉
|↑〉|1〉 → |↓〉|1〉 (2)

Here the motional qubit is called the control qubit; if
it’s state is |0〉, the spin bit remains unchanged, if it is
a |1〉, the spin bit flips. This truth table appears to be
classical, but it can also act on superposition states.
For example, we can transfer a superposition of the
motional qubit into an entangled superposition
between the motion and spin qubit:

  |↓〉(α|0〉+β|1〉) (CN)→ α|↓〉|0〉+β|↑〉|1〉.

There are similar proposals for quantum
logic on trapped neutral atoms.  In this case, because
the Coulomb interaction is absent, requirement 2 is
satisfied by selectively moving the atoms very close
together to realize coupling through a direct spin-spin
interaction.  In a related scheme called cavity-QED
(cavity-quantum-electrodynamics), atoms
communicate via photons that are confined in a
common optical cavity or optically transferred
between separate cavities.  Some proposed condensed
matter schemes for quantum computers are quite
similar to these atomic-physics schemes.  The qubits
could be composed of electron or nuclear spins which
are localized to particular sites in a solid host.  If
these sites are far enough apart, then the separate spins
interact negligibly and superposition states can be
preserved.  If the sites are not too far apart, the
electron clouds surrounding the sites can be distorted
by the fields from a nearby surface electrode so that
the neighboring electron spins interact with and couple
to each other.   This interaction could be used to
realize a controlled-NOT gate.

Regardless of the physical system, an
arbitrary quantum computation (e.g., generating the
arbitrary superposition of Eq. (1)) can be constructed
from a series of single-qubit manipulations and two-
qubit controlled-NOT gates.  These two gates form a
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“universal” logic family, much like the AND and NOT
gates in classical computing.

After the computation, we need an efficient
way to read out the qubit states (requirement 3).  In
some condensed-matter schemes, this might be
accomplished by coupling a site’s electron cloud to
the gate of a single-electron transistor.  Since the
coupling can be made spin-dependent, it can be used
to measure the site’s electron spin state.  In atomic
physics, a common technique for detection is to use
state-dependent laser scattering.  In the trapped-ion
example, if the ion is in the |↓〉 state it can be made to
scatter many photons, while an ion in the |↑〉 state
scatters negligibly.  This disparity can be so large that
even if we detect only a small fraction of scattered
photons we can still distinguish the |↓〉 state from the
|↑〉 state with nearly 100% efficiency.

Realizing a computation composed of even a
few hundred operations on 10 to 20 qubits will be a
significant technical achievement.  However, for
quantum computation to be generally useful it must be
scalable to much larger numbers.  This is viewed as a
long-term disadvantage of the NMR system as it will
become very difficult to scale beyond approximately
10 qubits.  Very large scale integration (VLSI) is a
hallmark of modern classical computers; therefore, if
the basic elements of quantum computation can be
realized in a condensed-matter system, a host of
existing methods might be employed to scale up to
large size systems.  The ion trap scheme appears to
suffer in a similar way to the NMR scheme;
specifically, as the number of ions in a trap increases,
it will become more and more difficult to avoid
coupling to unwanted motional resonances.  However,
this system could be multiplexed if we make arrays of
traps comprising accumulators and storage cells, each
containing only a few ions.  Moving selected ions then
transfers information.  In condensed-matter systems,
similar transfers might be accomplished by moving
electrons between sites.

OUTLOOK

Currently, room-temperature molecular NMR
has demonstrated simple quantum manipulations on a
few qubits.  However, this system is in a highly mixed
state and entanglement is not manifest; this is related to
why it is not scalable to large numbers.  All the
elements of the trapped-ion and cavity-QED schemes
have been demonstrated on one and two atoms.  For
trapped ions, efforts to scale up to higher numbers of
ions have been hampered by decoherence of the
motional qubit, which is highly susceptible to external
electric field fluctuations; however, it appears to be

straightforward to overcome these effects.  A number
of condensed-matter schemes look promising, but
superpositions are very short-lived and quantum gates
have not yet been demonstrated.  From any
perspective, a rather large “abyss” exists between
theory and experiment as indicated in Fig. 4.
Certainly future experiments will be able to handle
more qubits and accomplish more coherent operations,
but hopefully the gap will also be closed through
future theoretical developments.

One recent theoretical breakthrough has been
the idea of quantum error-correction.  Here, classical
error-correction schemes have been adapted to the
quantum world.  Errors, such as bit-flips caused by
uncontrolled external field fluctuations or unwanted
measurement by the environment, can be detected and
corrected by measuring a subset of qubits and
performing subsequent logic operations. Qubit
superpositions can be maintained through these
operations; a situation seemingly implausible in
quantum mechanics because we are taught early on that
measurement destroys all superpositions!  In a long
computation, such as factoring big numbers, employing
error correction requires a fidelity significantly less
that what would be required without it.

Independent of the future of quantum
computing, the entire field of quantum-information
science is still in its infancy.  Certainly many issues
are not understood and one can be optimistic that their
resolution may lead to new insights into quantum
mechanics, its relationship to information science, and
its meaning in the physical world.
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SIDEBAR: SPOOKY COMPUTING

Quantum bits (qubits) can be prepared in superposition states of
0 and 1.  Following quantum mechanical notation, a qubit
superposition is expressed as α|0〉 + β|1〉, where α and β are
the  weights of the superposition.  A measurement of this
superposition is much like flipping a biased coin – the qubit
yields a “0” or “1” with relative probabilities related to α and
β, respectively.
With N qubits, we can construct the state

       (α1|0〉1+β1|1〉1) (α2|0〉2+β2|1〉2) · · · · (αΝ|0〉N+βΝ|1〉N), (1s)

having 2N weights.  But the most general state of N qubits is a
superposition of all 2N binary numbers:

            γ1|000…0〉 + γ2|000…1〉 + · · · + γ2N|111…1〉, (2s)

where the γi are the 2N weights. The qubits are said to be
entangled when the overall quantum state cannot be factored
into individual qubit states as in Eq. (1s).  Entangled qubits are
correlated with each other when measured, even though each
qubit is not in a definite state (0 or 1) before measurement.  For
example, each of the two qubits in the simple entangled state
|00〉+|11〉 will always collapse to the same state when
measured, yet neither qubit is in a well-defined state before the
measurement.  This implies that entangled qubits are somehow
interconnected, even though there may not be any physical
interaction between them.  This remains true even when the
qubits are separated by arbitrarily large distances.  Albert
Einstein described this situation as “spooky action-at-a-
distance,” and it remains one of the most mysterious features of
quantum mechanics.

Quantum computing harnesses the implicit
interconnections in entangled quantum states to speed up
computations.  To illustrate, consider the simple procedure of
flipping the first qubit of an N-bit quantum computer.  If the
computer is prepared in the unentangled state of Eq. (1s), then
this operation can always be reduced to swapping the weights
α1 and β1 – a single operation.  If the computer is instead
prepared in the entangled state of Eq. (2s), then flipping just the
first qubit is equivalent to swapping weights γ1 with γ2N-1+1, γ2

with γ2N-1+2, … and γ2N-1 with γ2N.  This is a total of 2N-1

swap operations, exponentially more than in the unentangled
case.
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FIGURE CAPTIONS

Figure 1. Simpli fied evolution during a quantum algorithm on N=3 quantum bits.  The inputs are prepared in
superposition states of all 2N = 8 possible numbers (written in binary).  The weights of the superposition are denoted
by the greyscale, where black is a 100% weight and white is a 0% weight.  (a) Quantum algorithm for simultaneously
doubli ng all input numbers (Modulo 7), by shifting all qubits one position to the left and wrapping around the leftmost
bit.  The outputs are also in superposition, and a final measurement projects one answer at random.  (b) Quantum
algorithm involving waveli ke interference of weights.  Here, quantum logic gates cause the input superposition to
interfere, ultimately canceli ng all of the weights except for one (101 in the figure) which can then be measured.  For
some algorithms, this lone answer (or the distribution of a few answers after repeated runs) can depend on the weights
of all 2N input states, leading to an exponential speedup over classical computers.

Figure 2. A Schematic representation of a model quantum computer based on trapped atomic ions.  Electric potentials
are appli ed to the horizontal cyli ndrical electrodes in order to provide a three-dimensional harmonic “trap.”   The trap
is relatively weak in the horizontal direction so that the ion equili brium positions (at low temperature), determined by
a balance between the trap and Coulomb repulsion forces, is a li near array.  The ions’ internal qubit states can be
formed by the direction of the magnetic moment in the ion which is parall el (|↓〉 state of lower energy) or antiparall el
(|↑〉 state of higher energy) to an externall y appli ed magnetic field. The two lowest energy states (denoted |n=0〉 and
|n=1〉) of a selected mode of motion form an additional qubit.  This qubit is shared among all the ions and can therefore
provide a data bus.  Logic operations are initiated by mapping the internal state superposition of one ion onto the
shared motional qubit using a focused laser beam.  A quantum logic gate is then performed between the motional qubit
and a second ion by focusing the beam on that ion.  To complete the logic operation between the two selected ions, the
initial mapping operation is reversed.

Figure 3. Top: Ion trap electrode structure on a 10mm x 15mm ceramic substrate.  The gold trap
electrodes and leads (brownish color) have been evaporated onto the substrate, and associated circuit elements are
visible on the surface of the structure.  The trapping region is a horizontal sli t which has been cut from the substrate,
with an expanded view at the bottom of the figure.  Bottom: Closeup of the ion trap region. Four berylli um ions which
have been cooled to near their ground state of motion form a li near crystal in the trap; an image of the ions is
superposed on the visible picture of the trap electrodes.  Radio-frequency potentials of about 500 V at near 250 MHz
have been appli ed between the upper and lower electrodes, and static potentials of several volts are appli ed between
members of the segmented upper electrode.  The trap apparatus is maintained in high vacuum (pressure ≅10-9 Pa, or
about 10-14 of atmospheric pressure) to prevent heating and chemical reactions of the ions with the background gas.

Figure 4. The “Quantum-computing Abyss.”  A large disparity exists between what is currently possible and what is
required for large-scale problems li ke factorizing big numbers.  Quantum error-correction techniques imply that by
encoding two-state superpositions in entangled states composed of several qubits, the required number of error-free
operations can be reduced from about 109 (factoring without error-correction) to about 104 or 105.   In several
proposed implementations of a quantum computer this appears to be technicall y feasible.
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